Main entry point for quantum computations with natural language interface.
from bioql import quantum
result = quantum(
program="dock aspirin to COX-1",
backend='simulator',
api_key='your_key',
shots=4096
)
Execute complete drug discovery pipeline: docking, affinity, ADME, toxicity.
from bioql import run_complete_pipeline
results = run_complete_pipeline(
molecule_smiles="CC(=O)OC1=CC=CC=C1C(=O)O",
target_protein_pdb="cox1.pdb",
backend='ibm_quantum'
)
Quantum molecular docking with VQE algorithm.
Methods: run_docking(), get_poses(), calculate_affinity()
Quantum ML for pharmacokinetics prediction.
Methods: batch_predict(), predict_absorption(), calculate_bioavailability()
Multi-endpoint toxicity screening with quantum classifiers.
Methods: predict_toxicity(), get_alerts(), calculate_risk_score()
Analyze protein sequences for physicochemical properties, secondary structure, and functional domains.
from bioql.omics import ProteomicsCircuit
circuit = ProteomicsCircuit(backend='ibm_quantum')
result = circuit.analyze_protein_sequence(
sequence="MKLLVLCLAAALARPKHPIKHQGLPQEVLNENLLRFFVAPFPEVFGK",
analysis_type="comprehensive",
shots=4096
)
print(result.molecular_weight)
print(result.isoelectric_point)
print(result.secondary_structure)
Predict post-translational modification sites including phosphorylation, acetylation, and methylation.
from bioql.omics import ProteomicsCircuit
circuit = ProteomicsCircuit(backend='ionq')
ptm_result = circuit.predict_ptm_sites(
sequence="MKLLVLCLAAALARPKHPIKHQGLPQEVLNENLLRFFVAPFPEVFGK",
modification_types=['phosphorylation', 'acetylation'],
confidence_threshold=0.75
)
for site in ptm_result.predicted_sites:
print(f"Position {site.position}: {site.modification_type}")
print(f"Confidence: {site.confidence}")
Identify metabolites from mass spectrometry data using quantum similarity search.
from bioql.omics import MetabolomicsCircuit
circuit = MetabolomicsCircuit(backend='ibm_quantum')
result = circuit.identify_metabolite(
mass_spectrum={
'peaks': [180.063, 342.116, 504.169],
'intensities': [100, 85, 45]
},
ionization_mode='positive',
database='hmdb',
shots=4096
)
print(f"Match: {result.top_match.name}")
print(f"Score: {result.top_match.score}")
Analyze metabolic pathways and predict flux distributions using QAOA optimization.
from bioql.omics import MetabolomicsCircuit
circuit = MetabolomicsCircuit(backend='simulator')
pathway_result = circuit.analyze_metabolic_pathway(
pathway_id='glycolysis',
metabolite_concentrations={
'glucose': 5.0,
'pyruvate': 0.8,
'lactate': 1.2
},
conditions={'pH': 7.4, 'temperature': 37}
)
print(f"Pathway Flux: {pathway_result.total_flux}")
print(f"Bottleneck: {pathway_result.bottleneck_reaction}")
Integrate multiple omics layers for cross-layer correlation and pathway enrichment analysis.
from bioql.omics import MultiOmicsIntegrator
integrator = MultiOmicsIntegrator(backend='ibm_quantum')
result = integrator.integrate_omics_layers(
genomics_data={'variants': ['rs123456', 'rs789012']},
transcriptomics_data={'gene_expression': {'EGFR': 8.5}},
proteomics_data={'protein_abundance': {'EGFR': 12.3}},
metabolomics_data={'metabolites': {'glucose': 5.0}},
integration_method='quantum_correlation',
shots=8192
)
print(f"Integration Score: {result.integration_score}")
for corr in result.correlations:
print(f"{corr.layer1} - {corr.layer2}: r={corr.coefficient}")
Call genetic variants from sequencing data with quantum-enhanced accuracy.
from bioql.omics import GenomicsCircuit
circuit = GenomicsCircuit(backend='ibm_quantum')
variants = circuit.call_variants(
bam_file='sample_aligned.bam',
reference_genome='hg38',
min_quality=30,
min_depth=10,
shots=4096
)
print(f"Total Variants: {len(variants.variants)}")
print(f"SNPs: {variants.num_snps}")
print(f"Indels: {variants.num_indels}")
Perform differential gene expression analysis using quantum machine learning.
from bioql.omics import GenomicsCircuit
circuit = GenomicsCircuit(backend='ionq')
rna_result = circuit.analyze_rna_seq(
counts_matrix='gene_counts.csv',
sample_groups={
'control': ['S1', 'S2', 'S3'],
'treatment': ['S4', 'S5', 'S6']
},
normalization='tmm',
fdr_threshold=0.05
)
print(f"DEGs: {len(rna_result.deg_list)}")
print(f"Upregulated: {rna_result.num_upregulated}")
print(f"Downregulated: {rna_result.num_downregulated}")
BioQL supports multiple quantum computing platforms for running your drug discovery workflows.
backend='ibm_quantum'
Access to IBM's quantum computers with up to 127 qubits
backend='ionq'
Trapped-ion quantum computers with high fidelity
backend='azure_quantum'
Microsoft's cloud-based quantum computing service
backend='aws_braket'
Amazon's quantum computing service with multiple providers
from bioql import quantum
# Run on IBM Quantum
result = quantum(
program="dock aspirin to COX-1",
backend='ibm_quantum',
api_key='your_ibm_key',
shots=4096
)
# Run on IonQ
result = quantum(
program="dock aspirin to COX-1",
backend='ionq',
api_key='your_ionq_key',
shots=4096
)
# Or use the fast simulator for development
result = quantum(
program="dock aspirin to COX-1",
backend='simulator',
shots=1024
)