Main entry point for quantum computations with natural language interface.
from bioql import quantum
result = quantum(
program="dock aspirin to COX-1",
backend='simulator',
api_key='your_key',
shots=4096
)
Execute complete drug discovery pipeline: docking, affinity, ADME, toxicity.
from bioql import run_complete_pipeline
results = run_complete_pipeline(
molecule_smiles="CC(=O)OC1=CC=CC=C1C(=O)O",
target_protein_pdb="cox1.pdb",
backend='ibm_quantum'
)
Quantum molecular docking with VQE algorithm.
Methods: run_docking(), get_poses(), calculate_affinity()
Quantum ML for pharmacokinetics prediction.
Methods: batch_predict(), predict_absorption(), calculate_bioavailability()
Multi-endpoint toxicity screening with quantum classifiers.
Methods: predict_toxicity(), get_alerts(), calculate_risk_score()
BioQL supports multiple quantum computing platforms for running your drug discovery workflows.
backend='ibm_quantum'
Access to IBM's quantum computers with up to 127 qubits
backend='ionq'
Trapped-ion quantum computers with high fidelity
backend='azure_quantum'
Microsoft's cloud-based quantum computing service
backend='aws_braket'
Amazon's quantum computing service with multiple providers
from bioql import quantum
# Run on IBM Quantum
result = quantum(
program="dock aspirin to COX-1",
backend='ibm_quantum',
api_key='your_ibm_key',
shots=4096
)
# Run on IonQ
result = quantum(
program="dock aspirin to COX-1",
backend='ionq',
api_key='your_ionq_key',
shots=4096
)
# Or use the fast simulator for development
result = quantum(
program="dock aspirin to COX-1",
backend='simulator',
shots=1024
)