BioQL Quantum Computing Quantum Overlay Quantum Overlay
โš›๏ธ Version 5.7.5 - Production Ready

Quantum Computing for Drug Discovery

Enterprise-grade quantum platform for molecular docking, binding affinity prediction, ADME/Tox analysis, and CRISPR gene editing optimization. Natural language interface powered by real quantum hardware.

133+
Quantum Qubits
7
Discovery Modules
5
Quantum Backends
99.9%
QEC Fidelity
quantum_drug_discovery.py
from bioql import quantum

# Natural language quantum programming
result = quantum(
    "dock aspirin to COX-1 and predict binding affinity",
    backend='ibm_quantum',
    api_key='your_api_key',
    shots=4096
)

# Results with quantum advantage
print(f"Binding Energy: {result.binding_energy} kcal/mol")
print(f"Affinity Kd: {result.affinity_kd} nM")
print(f"Drug-likeness: {result.lipinski_compliant}")

Get Started in Seconds

Install BioQL via PyPI and start running quantum computations

๐Ÿ“ฆ

Install from PyPI

pip install bioql
โœ…

Verify Installation

import bioql
print(bioql.__version__)
# 5.7.5

Latest version: 5.7.5 โ€ข Python 3.8+ โ€ข View on PyPI โ†’

Quantum Computing Meets Drug Discovery

Real quantum hardware processing molecular structures at unprecedented scale

Quantum Computing Hardware

133-Qubit IBM Quantum

Real quantum hardware for molecular simulations

Quantum Laboratory

Enterprise Quantum Lab

Production-grade quantum infrastructure

โš›๏ธ
133+
Quantum Qubits
๐Ÿ”ฌ
5
Quantum Backends
โšก
10x
Faster vs Classical
๐ŸŽฏ
99.9%
QEC Fidelity

Why Choose BioQL?

The most complete quantum drug discovery platform with proven results

๐Ÿงฌ

Natural Language Interface

Write drug discovery workflows in plain English. No quantum gates knowledge required. 164B+ NLP patterns.

  • โœ“ Zero quantum programming experience needed
  • โœ“ Automatic circuit optimization
  • โœ“ Context-aware semantic parsing
โš›๏ธ

Real Quantum Hardware

Run on IBM Torino (133 qubits), IonQ trapped ions, Google Cirq, Azure Quantum, and AWS Braket.

  • โœ“ Multi-backend support
  • โœ“ Automatic error mitigation (ZNE, PEC)
  • โœ“ Quantum Error Correction (QEC)
๐Ÿ’Š

Complete Drug Pipeline

7 production-ready modules: Docking, Binding Affinity, ADME, Toxicity, Pharmacophore, Protein Folding, De Novo Design.

  • โœ“ Validated vs. experimental data
  • โœ“ 50+ biochemical constants
  • โœ“ Real Vina docking integration
  • โœ“ Quantum-enhanced molecule generation
๐Ÿ”ฌ

CRISPR-QAI Module

Quantum-enhanced CRISPR guide RNA optimization with off-target prediction and phenotype inference.

  • โœ“ Guide sequence encoding
  • โœ“ Energy collapse estimation
  • โœ“ Multi-backend support
๐Ÿ“Š

Enterprise Compliance

21 CFR Part 11 aligned provenance logging, cryptographic audit trails, and full reproducibility tracking.

  • โœ“ Signed execution records
  • โœ“ Compliance dashboards
  • โœ“ Export to regulatory formats
โšก

Performance Optimized

Smart caching (24x speedup), job batching (30% cost savings), circuit optimization (35% gate reduction).

  • โœ“ <5% profiling overhead
  • โœ“ Interactive HTML dashboards
  • โœ“ Automatic cost optimization

Drug Discovery Modules

Production-ready quantum algorithms for every stage of drug development

01

Molecular Docking

Predict ligand-receptor binding poses with quantum advantage

Accuracy ยฑ0.3 kcal/mol
Poses 20+ per run
from bioql.circuits import MolecularDockingCircuit

docking = MolecularDockingCircuit(
    ligand_smiles='CC(=O)OC1=CC=CC=C1C(=O)O',
    receptor_pdb='cox1.pdb',
    num_poses=20
)

result = docking.run_docking(shots=4096)
print(result.best_energy)  # -8.5 kcal/mol
02

Binding Affinity

VQE-based quantum chemistry for precise Kd/Ki calculation

Range 0.01-100 ยตM
Parameters ฮ”G, Kd, Ki, IC50
from bioql.circuits import BindingAffinityCircuit

circuit = BindingAffinityCircuit(
    ligand_smiles="CC(=O)OC1=CC=CC=C1C(=O)O",
    receptor_pdb="protein.pdb",
    n_qubits=12,
    vqe_depth=3
)

result = circuit.estimate_affinity()
print(result.binding_affinity_kd)  # 1.45 nM
03

ADME Prediction

Quantum ML for pharmacokinetics: Absorption, Distribution, Metabolism, Excretion

Accuracy Rยฒ = 0.82
Properties 6+ parameters
from bioql.circuits import ADMECircuit

circuit = ADMECircuit(
    molecule_smiles="CC(=O)OC1=CC=CC=C1C(=O)O"
)

result = circuit.batch_predict()
print(result.bioavailability)  # 65.3%
print(result.half_life)  # 4.2 hours
04

Toxicity Prediction

Multi-endpoint toxicity screening with quantum classifiers

Endpoints 5 toxicity types
AUC-ROC 0.88 avg
from bioql.circuits import ToxicityPredictionCircuit

circuit = ToxicityPredictionCircuit(
    molecule_smiles="c1ccccc1N(=O)=O"
)

result = circuit.predict_toxicity()
print(result.overall_risk)  # 0.65 (high)
print(result.alerts)  # ['nitro_aromatic']
05

Pharmacophore Modeling

3D feature extraction for virtual screening and lead optimization

Features 5 types
Conformers 20+ analyzed
from bioql.circuits import PharmacophoreCircuit

circuit = PharmacophoreCircuit(
    molecule_smiles="CC(=O)OC1=CC=CC=C1C(=O)O",
    n_conformers=20
)

model = circuit.generate_pharmacophore()
print(model.features)  # H-bond donors/acceptors...
06

Protein Folding

QAOA-based optimization for tertiary structure prediction

Algorithm QAOA
Lattice 2D/3D
from bioql.circuits import ProteinFoldingCircuit

folding = ProteinFoldingCircuit()
circuit = folding.build(
    sequence_length=10,
    lattice_dimensions=2,
    qaoa_layers=3
)

result = folding.optimize()
print(result.folding_energy)
07

De Novo Drug Design

Quantum-enhanced generation of novel drug-like molecules from scratch

Scaffolds 4 types
Validation Lipinski + PAINS
from bioql import quantum

# Design new drug for specific target
result = quantum(
    "design new GLP-1 agonist with high bioavailability",
    backend='ibm_quantum',
    api_key='your_key',
    shots=4096
)

print(result.designed_molecules)  # Novel drug candidates
print(result.best_molecule.smiles)  # Top candidate
Quantum Computing Chip

Multi-Backend Quantum Ecosystem

Run on the world's most advanced quantum computers

IBM Quantum

Device IBM Torino
Qubits 133
Technology Superconducting
Production Ready

IonQ Aria

Device IonQ Aria
Qubits 25
Technology Trapped Ions
Production Ready

Google Cirq

Platform Cirq + Sycamore
Qubits 70+
Technology Superconducting
Production Ready

Azure Quantum

Platform Azure Quantum
Providers Multiple
Technology Cloud Access
Production Ready

AWS Braket

Platform Amazon Braket
Providers Rigetti, IonQ, D-Wave
Technology Multi-tech
Production Ready

Local Simulator

Platform Qiskit Aer
Qubits 30+
Technology Classical Simulation
Always Available

Pay-Per-Shot Pricing

Pay only for the quantum shots you execute. No subscriptions, no hidden fees.

๐Ÿ’ณ Secure Payments via Stripe

All billing managed through Stripe. Usage tracked in real-time. Pay as you go.

Quantum Backend Pricing

Choose your backend and pay per shot executed

Backend Qubits Price/Shot 1000 Shots
๐Ÿ–ฅ๏ธ Simulators
IonQ Ideal Simulator 29q $0.01 $10
AWS SV1 Simulator 34q $0.01 $10
AWS TN1 Simulator 50q $0.02 $20
โš›๏ธ Quantum Hardware
IBM Torino 133q $3.00 $3,000
IBM Brisbane 127q $3.00 $3,000
IonQ Forte 36q $3.00 $3,000
IonQ QPU 36q $2.00 $2,000
QuEra Aquila 256q $5.00 $5,000
๐Ÿ’ก How It Works

You're charged per shot executed based on the quantum backend you choose. Simulators cost $0.01-0.02 per shot, while quantum hardware ranges from $2-5 per shot. All billing is handled securely through Stripe with real-time usage tracking. No minimum commitment required.

Get Started Now

Free tier: 100 shots/month โ€ข No credit card required for testing

Quantum Laboratory

Try BioQL Now

No installation required. Run quantum drug discovery in your browser.

Results Execution time: 2.3s
{
  "binding_energy": -8.5,
  "affinity_kd": 1.45,
  "best_pose": {
    "rotation": [0.12, 0.45, 0.89],
    "translation": [2.3, -1.2, 0.5]
  },
  "lipinski_compliant": true,
  "quantum_advantage": "2.3x speedup vs classical"
}