Enterprise-grade quantum platform for molecular docking, binding affinity prediction, ADME/Tox analysis, and CRISPR gene editing optimization. Natural language interface powered by real quantum hardware.
from bioql import quantum
# Natural language quantum programming
result = quantum(
"dock aspirin to COX-1 and predict binding affinity",
backend='ibm_quantum',
api_key='your_api_key',
shots=4096
)
# Results with quantum advantage
print(f"Binding Energy: {result.binding_energy} kcal/mol")
print(f"Affinity Kd: {result.affinity_kd} nM")
print(f"Drug-likeness: {result.lipinski_compliant}")
Install BioQL via PyPI and start running quantum computations
pip install bioql
import bioql
print(bioql.__version__)
# 5.7.5
Latest version: 5.7.5 โข Python 3.8+ โข View on PyPI โ
The most complete quantum drug discovery platform with proven results
Write drug discovery workflows in plain English. No quantum gates knowledge required. 164B+ NLP patterns.
Run on IBM Torino (133 qubits), IonQ trapped ions, Google Cirq, Azure Quantum, and AWS Braket.
7 production-ready modules: Docking, Binding Affinity, ADME, Toxicity, Pharmacophore, Protein Folding, De Novo Design.
Quantum-enhanced CRISPR guide RNA optimization with off-target prediction and phenotype inference.
21 CFR Part 11 aligned provenance logging, cryptographic audit trails, and full reproducibility tracking.
Smart caching (24x speedup), job batching (30% cost savings), circuit optimization (35% gate reduction).
Production-ready quantum algorithms for every stage of drug development
Predict ligand-receptor binding poses with quantum advantage
from bioql.circuits import MolecularDockingCircuit
docking = MolecularDockingCircuit(
ligand_smiles='CC(=O)OC1=CC=CC=C1C(=O)O',
receptor_pdb='cox1.pdb',
num_poses=20
)
result = docking.run_docking(shots=4096)
print(result.best_energy) # -8.5 kcal/mol
VQE-based quantum chemistry for precise Kd/Ki calculation
from bioql.circuits import BindingAffinityCircuit
circuit = BindingAffinityCircuit(
ligand_smiles="CC(=O)OC1=CC=CC=C1C(=O)O",
receptor_pdb="protein.pdb",
n_qubits=12,
vqe_depth=3
)
result = circuit.estimate_affinity()
print(result.binding_affinity_kd) # 1.45 nM
Quantum ML for pharmacokinetics: Absorption, Distribution, Metabolism, Excretion
from bioql.circuits import ADMECircuit
circuit = ADMECircuit(
molecule_smiles="CC(=O)OC1=CC=CC=C1C(=O)O"
)
result = circuit.batch_predict()
print(result.bioavailability) # 65.3%
print(result.half_life) # 4.2 hours
Multi-endpoint toxicity screening with quantum classifiers
from bioql.circuits import ToxicityPredictionCircuit
circuit = ToxicityPredictionCircuit(
molecule_smiles="c1ccccc1N(=O)=O"
)
result = circuit.predict_toxicity()
print(result.overall_risk) # 0.65 (high)
print(result.alerts) # ['nitro_aromatic']
3D feature extraction for virtual screening and lead optimization
from bioql.circuits import PharmacophoreCircuit
circuit = PharmacophoreCircuit(
molecule_smiles="CC(=O)OC1=CC=CC=C1C(=O)O",
n_conformers=20
)
model = circuit.generate_pharmacophore()
print(model.features) # H-bond donors/acceptors...
QAOA-based optimization for tertiary structure prediction
from bioql.circuits import ProteinFoldingCircuit
folding = ProteinFoldingCircuit()
circuit = folding.build(
sequence_length=10,
lattice_dimensions=2,
qaoa_layers=3
)
result = folding.optimize()
print(result.folding_energy)
Quantum-enhanced generation of novel drug-like molecules from scratch
from bioql import quantum
# Design new drug for specific target
result = quantum(
"design new GLP-1 agonist with high bioavailability",
backend='ibm_quantum',
api_key='your_key',
shots=4096
)
print(result.designed_molecules) # Novel drug candidates
print(result.best_molecule.smiles) # Top candidate
Run on the world's most advanced quantum computers
Pay only for the quantum shots you execute. No subscriptions, no hidden fees.
All billing managed through Stripe. Usage tracked in real-time. Pay as you go.
Choose your backend and pay per shot executed
Backend | Qubits | Price/Shot | 1000 Shots |
---|---|---|---|
๐ฅ๏ธ Simulators | |||
IonQ Ideal Simulator | 29q | $0.01 | $10 |
AWS SV1 Simulator | 34q | $0.01 | $10 |
AWS TN1 Simulator | 50q | $0.02 | $20 |
โ๏ธ Quantum Hardware | |||
IBM Torino | 133q | $3.00 | $3,000 |
IBM Brisbane | 127q | $3.00 | $3,000 |
IonQ Forte | 36q | $3.00 | $3,000 |
IonQ QPU | 36q | $2.00 | $2,000 |
QuEra Aquila | 256q | $5.00 | $5,000 |
You're charged per shot executed based on the quantum backend you choose. Simulators cost $0.01-0.02 per shot, while quantum hardware ranges from $2-5 per shot. All billing is handled securely through Stripe with real-time usage tracking. No minimum commitment required.
Free tier: 100 shots/month โข No credit card required for testing
No installation required. Run quantum drug discovery in your browser.
{
"binding_energy": -8.5,
"affinity_kd": 1.45,
"best_pose": {
"rotation": [0.12, 0.45, 0.89],
"translation": [2.3, -1.2, 0.5]
},
"lipinski_compliant": true,
"quantum_advantage": "2.3x speedup vs classical"
}